AFCI Semi Annual Review

AFCI ANL Physics Activities

G. Palmiotti ANL

AFCI ANL Physics Activities

- Analysis, planning and support of coupling experiments (TRADE, MUSE)
- Analysis of irradiation experiments in power reactors (PROFIL)
- Uncertainty analysis for defining nuclear data needs for critical transmuters and ADS's

MUSE Program

- MUSE 4 first went critical in January 2001
- GENEPI (deuterium) deep subcritical June 2001
- GENEPI (deuterium) near critical November 2001-January 2002 (limited measurements)
- Reference core measurements through October 2002
- Transition to tritium target in November 2002
- Problems with filament of ion source causing delays
- Year 2003 planning
 - k=0.995, 0.97, 0.95
 - Pb, perhaps through 1st quarter of 2004
- Gas cooled configuration plans for 2004; US participation requested

MUSE 4 Critical Configuration 01/09/2001

Primary Measurements in MUSE

- Sub-criticality
 - MSM (Modified Source Method)
 - Rod drop
 - Pulsed source
 - Feynman, Rossi α
- Core characterization
 - source importance
 - $-\beta_{eff}/\Lambda$
 - spectrum (passive with foils, and active with He-3 detector) and spectral indices
 - reaction rate profiles

Analysis of the MUSE 4 Configuration

- A very important result has been achieved in the calculation of reaction rate distribution for configuration with reflector in direct contact with the core (no presence of blanket). The use of a very large number of groups (~1000) has allowed to accurately reproduce the spectrum transient and consequently dramatically improve the results. This solves a longstanding (more than a decade) discrepancy for these kinds of configurations.
- Following these findings an iterative methodology, based on conservation of reaction rates, has been successfully developed for allowing to reproduce the same type of reaction rate distributions obtained with the large of number of groups but, this time, using a broad (more reasonable) energy structure (33 groups). This methodology could be eventually incorporated in a cell code.

TRADE

- ENEA (Italy)
- Couple a TRIGA reactor with real spallation source (115 Mev cyclotron/heavy target)
- TRIGA has temperature feedback and poisoning effectc
- Next step after MUSE in a sequence of validation steps towards a real ADS
- TRADE has strong financial backing from ENEA and CEA, with high probability of EU funding

TRADE LAYOUT

TRADE Experiments

- Pre-TRADE characterizations Fall 2002
- TRADE Reference Core Spring 2003
- TRADE SC with DT source Summer 2003
- TRADE SC with cyclotron Summer 2006
- US involved in:
 - Accelerator review (LANL)
 - Target design (LANL)
 - Physics design (ANL)
 - Experimental lead (ANL)
 - Project scientific lead (MS-ANL)

PROFIL-1 C/E and Uncertanties

Data Tyma		C/E		Tota	al Uncerta	inty
Data Type	JEF2.2	ENDF/B-V	ENDF/B-VI	NEC	PEC	TEC
$\sigma_{\sf capt}$ U-235	$0.95 \pm 1.7 \%$	$0.99 \pm 1.7 \%$	$0.95 \pm 1.7 \%$	3.4 %	6.5 %	7.6 %
$\sigma_{\sf capt}$ U-238	$0.98 \pm 2.3 \%$	$1.02 \pm 2.3 \%$	$0.98 \pm 2.3 \%$	1.7 %	2.2 %	3.1 %
σ _{capt} Pu-238	$0.98 \pm 4.0 \%$	$1.30 \pm 4.0 \%$	$1.69 \pm 4.0 \%$	23.6 %	32.3 %	48.0 %
σ _{capt} Pu-239	$0.99 \pm 3.0 \%$	$0.96 \pm 3.0 \%$	$0.94 \pm 3.0 \%$	5.8 %	7.2 %	10.6 %
σ _{capt} Pu-240	$1.14 \pm 2.2 \%$	$1.07 \pm 2.2 \%$	$0.99 \pm 2.2 \%$	12.3 %	16.4 %	23.7 %
σ _{capt} Pu-241	$1.24 \pm 4.1 \%$	$1.03 \pm 4.1 \%$	$0.88 \pm 4.1 \%$	14.2 %	21.1 %	27.4 %
σ _{capt} Pu-242	$1.19 \pm 3.5 \%$	$1.11 \pm 3.5 \%$	$1.06 \pm 3.5 \%$	13.3 %	17.8 %	24.9 %
σ _{capt} Am-241	$1.02 \pm 1.7 \%$	$0.87 \pm 1.7 \%$	$0.83 \pm 1.7 \%$	10.6 %	13.8 %	20.6 %

TRANSMUTATION PHYSICS: THE RELEVANCE OF NUCLEAR DATA

- Nuclear data uncertainty effects on key parameters
- Intermediate energy (20 ≤ E < 200 MeV) data impact
- Target accuracies and feedback to data projects
- Role of integral and differential measurements

NUCLEAR DATA UNCERTAINTY EFFECTS ON:

- Criticality (multiplication factor)
- Doppler Reactivity Coefficient
- Coolant Void Reactivity Coefficient
- Effective Delayed Neutron Fraction
- Reactivity Loss during Irradiation
- Transmutation Potential
- Peak Power Value
- φ* Parameter (for subcritical ADS systems)
- Max Dpa, Max He
 and H- production, Max (He-production)/Dpa
- Decay Heat
- → Use of GPT for sensitivity coefficient assessment

Background

- The uncertainty analysis is applied to a transmutation dedicated core (MA: Pu = 2:1)
- Nuclear Data uncertainties: "JEF-2" covariance matrix applied to ENDF/B-VI data
- Hypothesis on correlations:
 - No correlation (in energy, among reactions etc)
 - Full energy correlation
 - Partial energy correlation (by energy "band")

Main Parameters of the Reference System

K _{eff}	\hat{eta}_{eff}	$\Delta ho^{ m Doppler~(a)}$	$\Delta ho^{ m void}$	Δρ	cycle	Decay	Peak
	[pcm]		•	1 year (b)	2 years (b)	Heat ^(d)	Power
0.948164	185.4	-0.00026	+0.02906	-0.01196	-0.02158	25 MWth	2.9
		(Δn) ^{cyc}	cle (c) [10 ²⁴ at./c	m ³]			
Pu238	Am241	Am242m Am243 Cm242 Cm24		44	Cm245		
5.19E-5	-8.64E-5	8.34E-6	-5.24E-5	2.68E-	5 2.28H	2-5	1.50E-6

⁽a) For $\Delta T = T - TRef = 1773K - 980K$;

Main Parameters of the Reference System

φ*	Max Dpa [sec ⁻¹ ×cm ⁻³]	Max He-production [sec ⁻¹ ×cm ⁻³]	Max H-production [sec ⁻¹ ×cm ⁻³]	Max (He-production)/Dpa
1.18	2.58E+16	6.15E+15	6.77E+16	0.24

⁽b) At full power;

⁽c) One year irradiation;

⁽d) At discharge. Nominal power of the core: 377MWth;

$\Delta \rho^{cycle}$ (1 year) – Perturbation Breakdown by Isotope (Values in pcm)

Isotope	Capture	Fission	Elastic Removal	Inelastic + (n,xn) Removal	SUM
U234	-2.5	6.0	-	-0.9	2.6
U235	-0.1	1.2	-	0	1.1
U236	-0.1	0.1	-	0	-0.1
Np237	616.6	-659.9	-1.7	74.8	29.8
Pu238	-264.5	3060.5	-	-55.4	2740.6
Pu239	277.2	-5389.0	-2.2	82.2	-5031.8
Pu240	-28.6	108.6	0.8	-7.5	73.3
Pu241	100.9	-2032.1	-0.9	19	-1913.2
Pu242	-43.2	139.5	0.6	-11.6	85.2
Am241	1712.8	-1620.4	-2.6	127.3	217.0
Am242m	-39.3	1354.4	-0.2	-21	1293.9
Am242f	-1.1	29.3	-	-0.3	28.0
Am243	870.9	-700.3	-0.9	199.1	368.8
Cm242	-119.2	986.2	-0.1	-45.1	821.9
Cm243	-0.1	14.1	-	-0.1	13.9
Cm244	-135.6	735.6	-0.2	-36.6	563.1
Cm245	-5.6	327.0	0.1	-2.4	319.1
Cm246	-1.2	10.8	-	-0.7	8.8
Cm247	-	1.3	-	0	1.3
Fission Products	-574	0	-41.1	-286.3	-901.3
SUM	2363.2	-3627.3	-48.6	34.6	-1278.2

Isotope Breakdown of the Core Coolant Void Reactivity by Component (Values in pcm)

	Capture	Fission	Leakage	Elastic Removal	Inelastic + (n,xn) Removal	SUM
Np237	0.3	10.1	-	0.1	0.9	11.3
Pu238	-	1.1	-	-	-	1.1
Pu239	3.8	-9.2	0.1	-	0.5	-4.8
Pu240	1.2	6.5	-	0.1	0.7	8.5
Pu241	0.2	0.7	-	-	-	0.9
Pu242	0.2	2.1	-	-	-	2.5
Am241	4.3	34.9	0.1	-	1.4	40.7
Am242m	-	0.4	-	-	-	0.4
Am243	3.1	17.9	-0.1	0.4	-3.7	17.6
Cm242	-	-	-	-	-	-
Cm243	-	0.1	-	-	-	0.1
Cm244	2.6	8.9	-	0.2	0.3	11.9
Cm245	-	0.4	-	-	0.1	0.5
Zr	23.8	-	-6.6	36.2	-16.3	37
N15	-	-	-7.5	132.7	-	125.2
Fe	61	-	-79.1	121.3	4.6	107.9
Cr	3.9	-	-5.8	15.5	-5.7	7.9
Ni	-0.3	-	0.1	0.4	-0.2	-
Mo	-	-	-	0.3	-0.2	-
Mn	0.8	-	-	0.8	0.3	1.9
W	0.3	-	-	-	-	0.3
Pb	224.2	-	-1913.2	728.3	2229.5	1268.8
Bi	393.2	-	-2336.3	929.2	2561.4	1547.5
SUM	722.7	73.8	-4348.3	1965.5	4773.7	3187.4

Resulting Uncertainties (in Percentage) for the Integral Parameters of the Reference System

		φ*	Max Dpa	Max He- production	Max H product.	Max (He- production)/Dpa
ΔI _{no_cor}	relation	±2.74	±29.9	±43.6	±28.5	±45.5
ΔI_{PE}	C (a)	±5.07	±48.9	±59.1	±53.1	±67.4

⁽a) Partial correlation in energy

Resulting Uncertainties (in Percentage) for the Integral Parameters of the Reference System

	$\mathbf{K}_{ ext{eff}}$	$\hat{eta}_{\it eff}$		$\Delta ho^{ m void}$		Δρ ^{cycle} (1 year)	Peak Power
ΔI _{no_correlation}	±2.77	±11.	3	±35.2		±47.4	±20.5
$\Delta I_{ m PEC}^{~(a)}$	±4.41	±17.	.4	±59.3		±73.1	±32.4
			∆n ^{cycle} (l	<i>b)</i>			
	Pu238	Am241	Am242m	Am243	Cm242	Cm244	Cm245
ΔI _{no_correlation}	±7.3	±15.1	±15.9	±15.3	±12.5	±25.6	±81.2
$\Delta I_{PEC}^{~(a)}$	±10.9	±23.8	±23.2	±24.3	±18.3	±37.8	±122.9

⁽a) Partial correlation in energy

⁽b) One year irradiation.

- Significant impact of uncertainties:
 - MA data: σ_f , σ_c , σ_{in} Improvements needed
 - Some impact of intermediate energy data on parameters related e.g. to damage phenomena
 - Decay heat uncertainty mostly related to MA (e.g. Cm) data. Different contribution of MA and FP with respect to standard fuel reactors
- To establish priorities and target accuracies on data uncertainty reduction, a formal approach: define target accuracy on design parameter and find out required accuracy on data (the "inverse" problem)

K_{eff} – Uncertainties (%) by Group – No Energy Correlation

	200 100(0)		CII						10 Dieigy Contention
Gr.	[MeV] ^(a)	Ocap	Ofiss	ν	σ _{el}	G inet	$\sigma_{n,2n}$	Total ^(b)	
1	19.6	0.01	0.05	0.02	-	0.04	0.04	0.08	
2	6.07	0.01	0.57	0.18	0.04		-	0.76	
3	2.23	0.03	0.83	0.27	0.07	0.46	-	0.99	0.35
4	1.35	0.47	1.56	0.41	0.20	0.77	-	1.86	
5	4.98e-1	0.84	0.39	0.08	0.10	0.19	-	0.95	0.3
6	1.83e-1	1.01	0.32	0.07	0.06	0.20	-	1.08	0.25
7	6.74e-2	0.41	0.24	0.07	0.02	0.04	-	0.49	0.2-
8	2.48e-2	0.37	0.22	0.04	0.02	0.03	-	0.43	
9	9.12e-3	0.31	0.20	0.03	-	-	-	0.37	
10	2.04e-3	0.20	0.08	0.02	-	-	-	0.21	0.1
11	4.54e-4	0.04	0.01	-	-	-	-	0.04	0.05 N,XN
12	2.26e-5	•	-	-	-	-	-	-	0 INELASTIC
13	4.00e-6	•	•	-	-	-	-	-	1 2 3 NU
14	5.40e-7	-		-	-	-	-	-	5 6 THE FISSION
15	1.00e-7	-	-	-	-	-	-	-	8 9 10 CARTURE
٦	「otal ^(b)	1.54	1.97	0.54	0.25	1.05	0.04	2.77	groups 10 11 12 13 14 15
_	Jich on								15

⁽a) High energy group boundary;
(b) Total obtained as the square root of the sum of the squares of individual contributions in row or column.

Keff - Uncertainties (%) by Isotope - No Energy Correlation

_								solope – No Energy Correlation
Isotope	_	Office	V	$\sigma_{\rm el}$	σ _{inel}	$\sigma_{n,2n}$	Total ^(b)	<u></u>
Pu238_		0.11	0.02		_	,	0.11	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Pu239			0.11	_	0.04	_	0.53	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
_Pu240	0.05	0.18	0.05	- 1	0.02	-	0.19	/ /
Pu241	0.04	0.30	0.03		0.01		0.31	
Pu242	0.01	0.05	0.02	-	0.01	- :	0.06	
Np237_	0.24	0.70	0.21		0.14	_ , _	_0.78	
Am241	1.32	1.12	0.38	-	0.22		1.79	┃°²-{`\\}/\\¶\\¶\\\ \\\\\\\\\\\\\\\\\\\\\\\\\
<u>Am242m</u>		0.09	0.03	-	0.01	-	0.10	╽┈╎╎╱╎╎╱┦╋╁┼┼┼┼┆┆┆┆┆┆┆
<u>Am243</u>	0.74	0.59	0.21		0.60		1.14	0.15
Cm242	-		-		-	_	-	▎ ^{╙┅} ┑╎╎╱╎╎╱╌┦▊█┈╎╎╎╽ <i>┋</i> ═╎╎╎╎ ┋═┼┼┼┼┼┼┼┼┼┼┼
Cm243	-	0.05	0.01	-		-	0.05	▎▕▗▞▗▗▞▗▐▊▋╁┼┼┼█╁▋▗▗▗▗
Cm244	0.13	1.09	0.18	-	0.07	-	1.11	▎▗▗▗▞▎▕▗▎▎▁▎█▐▎▎▎▎▎██▎ ^{▔▜▀▜} ▀▞▞▁▍▎▎▎▎▎
Cm245	0.01	0.41	0.08		0.01	-	0.42	
Cm246	-		-	-	_	•	-	
Fe56	0.03	•		0.05	0.49	-	0.50	
_Fe57	<u> </u>	ı		-	0.06	-	0.06	
<u>Cr52</u>	0.01		•	0.01	0.03	-	0.03	STATE OF THE STATE
NI58			-		-		-	THE PARTY DESTREE
Zr	0.03	•	•	0.03	0.07		0.09	THE RESIDENCE OF THE PROPERTY
N15		•	<u>-</u> i	0.19			0.19	E E E E E E E E E E E E E E E E E E E
Pb	0.02	- '	•	0.10	0.41	0.02	0.43	S S S E 2 3 3 % C (B) CAPTERE
BI	0.04	<u> </u>	-				0.50	S O S E S E S E S CONTRACT
Total ⁽⁶⁾	1.54	1.97	0.54	0.25	1.05	0.04	2.77	~ -
M100-4-1	7 4 *							

⁽b) Total obtained as the square root of the sum of the squares of individual contributions in row or column.

Uncertainties on the Nuclear Density Variation of: Pu-238, Am-241, Am-242m, Am-243, Cm-242, Cm-244, Cm-245 (Values in Percentage)

Isotope				Uncertair	nty due to:				Total
Pu238	Np	237	Pu2	238	Am	241	Cm	242	7.33
	Capture	Fission	Capture	Fission	Capture	Fission	Capture	Fission	1
	3.67	0.12	0.19	0.61	6.31	0.04	0.06	0.09	1
Am241	Am	241							15.12
	Capture	Fission							
	11.06	10.31							
Am242m	Am	241	Am2	42m					15.91
	Capture	Fission	Capture	Fission					
	15.70		0.83	2.45					
Am243	3 Pu242 An		243						15.28
	Capture	Capture	Fission						
	0.22	10.66	10.94						
Cm242	Am	241	Cm	242					12.54
	Capture	Fission	Capture	Fission					
	12.54	0.15	0.17	0.27					
Cm244	Am	243		Cm244					25.55
	Capture	Fission	Capture	Fission	(n,2n)				
	23.48	0.20	4.98	8.75	0.20				
Cm245	Am	243		Cm244			Cm245		81.19
	Capture	Fission	Capture	Fission	(n,2n)	Capture	Fission	(n,2n)	
	4.82	0.03	72.33	1.71	0.04	5.48	36.10	0.03	A

Max (He-production)/Dpa – Uncertainties (%) by Group

							1011)		Checitamities (10) by Gloup
Gr.	[MeV] (a)	σ _{cap}	Ofiss	٧	σ₀ı	σinel	σ _{n,2n}	Total ^(b)	
1	150	•	•	-	0.1	4.8	-	4.8	
2	55.2	•	0.1	-	0.2	20.1	6.4	21.1	
3	19.6	•	0.7	0.2	0.7	11.6	34.0	35.9	0.25
4	6.07	0.1	3.2	1.0	0.3	4.5	-	5.6	
5	2.23	0.2	4.7	1.6	0.5	4.3	-	6.6	0.2
6	1.35	3.1	9.2	2.5	1.5	5.8	-	11.7	
7	4.98e-1	5.2	2.4	0.5	0.8	1.3	-	6.0	0.15
	1.83e-1	6.3	2.0	0.4	0.5	1.2	-	6.7	
9	6.74e-2	2.6	1.5	0.4	0.2	0.2	-	3.0	0.1
10	2.48e-2	2.2	1.3	0.2	0.2	0.1	-	2.6	
11	9.12e-3	1.9	1.2	0.2	•	-	-	2.3	
12	2.04e-3	1.2	0.5	0.1	•	-	-	1.3	N,XN
13	4.54e-4	0.2	0.1	-	-		-	0.2	0 INELASTIC
14	2.26e-5	•	-	-	-	-	-	-	1 2 3 ELASTIC
15	4.00e-6	•	-	•	•	•	-	-	5 6 7 PIONON
16	5.40e-7	-	•	-	-	•	-	•	9 10 11 12 12 CAPTURE
	1.00e-7	-	•		-	-	-	•	groups 10 11 12 13 14 15 16 17
٦	「otal ^(b)	9.6	11.5	3.2	2.0	14.1	40.4	45.5	
(a) I	ligh end	aras.	O#OU	n ha	ın da				

⁽a) High energy group boundary; (b) Total obtained as the square root of the sum of the squares of individual contributions in row or column.

Decay Heat - Relative Contribution (in Percentage) of Heavy Isotopes and Fission Products, at Different Cooling Times.

Dedicated System	Discharge	500 sec	1000 sec	3000 sec	1 hour	12 hours	1 day	10 days
Heavy Elements	23	46	50	57	58	74	77	86
Fission Products	77	53	50	43	41	26	22	14
SUPERPHENIX	Discharge	500 sec	1000 sec	3000 sec	1 hour	12 hours	1 day	10 days
Heavy Elements	8.1		18.9	19.0	19.0	25.8	26.7	4.61
Fission Products	89.7		74.6	72.6	72.3	63.7	62.1	73.2

¹ EOL (2 years)

Decay Heat [Watts] and its Evolution in Time

	Discharge ¹	500 sec	1000 sec	3000 sec	1 hour	12 hours	1 day	10 days
Light Elements	6.98E+4	5.72E+4	5.46E+4	5.24E+4	5.19E+4	4.21E+4	4.14E+4	3.89E+4
Heavy Elements	5.64E+6	5.51E+6	5.40E+6	5.14E+6	5.09E+6	4.85E+6	4.77E+6	4.38E+6
Fission Products	1.93E+7	6.36E+6	5.39E+6	3.84E+6	3.61E+6	1.70E+6	1.39E+6	6.93E+5
Total	2.51E+7	1.19E+7	1.08E+7	9.03E+6	8.76E+6	6.59E+6	6.20E+6	5.11E+6

¹ EOL (2 years)

Decay Heat [Watts] – Heavy Element Breakdown by Isotope

	Discharge ¹	500 sec	1000 sec	3000 sec	1 hour	12 hours	1 day	10 days
U	7.63E+0	7.62E+0	7.61E+0	7.59E+0	7.58E+0	7.29E+0	7.01E+0	3.71E+0
Np	3.05E+5	3.04E+5	3.04E+5	3.01E+5	3.01E+5	2.58E+5	2.19E+5	1.15E+4
Pu	9.59E+4	9.58E+4	9.56E+4	9.50E+4	9.49E+4	8.93E+4	8.81E+4	8.85E+4
Am	9.08E+5	7.73E+5	6.65E+5	4.08E+5	3.66E+5	1.73E+5	1.34E+5	7.83E+4
Cm	4.33E+6	4.33E+6	4.33E+6	4.33E+6	4.33E+6	4.33E+6	4.33E+6	4.20E+6
Bk	1.37E-3	1.35E-3	1.33E-3	1.26E-3	1.24E-3	7.09E-4	6.58E-4	6.41E-4
Cf	2.16E-4	2.16E-4	2.16E-4	2.16E-4	2.16E-4	2.17E-4	2.17E-4	2.22E-4
Total	5.64E+6	5.51E+6	5.40E+6	5.14E+6	5.09E+6	4.85E+6	4.77E+6	4.38E+6

¹ EOL (2 years)

Selected Integral Parameters: Uncertainty due to all Data Uncertainties ($\Delta I_{initial}$); Target Accuracies ($\Delta I_{required}$); Resulting Uncertainty from a Minimization Procedure ($\Delta I_{resulting}$).

		K _{eff}	φ*	Power Peak	Max Dpa	Max He-production	Max H-production.	Max He-prod./Dpa
ĺ	$\Delta \mathbf{I}_{ ext{initial}}$	±2.77	±2.74	±20.50	±29.90	±43.60	±28.50	±45.50
I	$\Delta \mathbf{I}_{required}$	±1%	±2%	±5%	±15%	±15%	±15%	±15%
Ī	$\Delta I_{ m resulting}$	±1.1%	±1.0%	±8.2%	±13.0%	±14.8%	±13.7%	±15.3%

Cross-Sections Uncertainties for Selected Cross-Sections: Original Uncertainty and Required Uncertainty to Meet Integral Parameter Target Accuracy

Isotope			Original	Required	Isotope	Cross		Original	Required
	Section		Uncert. (%)	Accuracy (%)		Section		Uncert. (%)	Accuracy (%)
Pu239	G -	4	6.5	3.4		$\sigma_{ m fiss}$	2	40	10.0
	σ_{fiss}	5	4	3.1	Cm244		3	40	8.5
Pu241	σ_{fiss}	6	10	5.6			4	40	5.0
	σ_{fiss}	3	25	8.0	Cm245	σ_{fiss}	5.	30	9.7
Np237		4	25	5.1			6	30	9.6
	ν	4	5	4.1	Fe56	σ_{inel}	4	20	4.9
		4	40	7.5	N15	$\sigma_{\rm el}$	4	5	3.9
	_	5	40	5.5			1	40	20.4
	σ_{cap}	6	40	5.1			2	40	9.8
		7	20	5.9	Pb	σ _{inel}	3	40	10.6
Am241		8	20	6.3			4	40	10.1
		9	20	6.9	-	$\sigma_{n,2n}$	1	100	21.5
	σ _{fiss}	2	20	5.6			1	40	18.8
		3	20	4.6	Bi	σ inel	2	40	8.1
		4	20	3.9			3	40	9.3
	ν	3	5	3.8			4	40	14.0
	V	4	5	3.3	·	$\sigma_{n,2n}$	1	100	17.5
		4	40	10.4			1	20	20.0
	σ_{cap}	5	40	5.5			2	20	12.0
		6	40	5.1			3	20	12.1
		7	20	5.9	$\sigma_{ m d_I}$	oa ·	4	20	8.8
Am243		8	20	6.3	•		5	20	20.0
	σ_{fiss}	2	20	7.6			6	20	20.0
		3	20	6.2			7	20	10.9
		4	20	5.4			1	20	10.8
		3	50	12.6	σ _{(n,}	,α)	2	20	20.0
	$\sigma_{\rm inel}$	4	50	7.6			1	20	15.1
	11101	5	50	12.0	$\sigma_{(n)}$,p)	2	20	12.4
		6	50	12.2			3	20	20.0

Conclusions

- For "transmuter" reactors, data uncertainty reductions are mandatory, when preconceptual design studies would be required. Most needs appear below 20 MeV.
- Below 20 MeV, new evaluations and integral experiments (e.g. separated, pure isotope sample irradiation in power reactors, or AMS techniques) can provide most of the data needed. Some differential measurements (e.g. inelastic reactions) can be needed, together with few selected experiments in the resonance region.
- At high energy, (n,p) and (n,α) reaction measurements for structural materials should be given priority.
- These conclusions will be integrated with, and will give guidance to, the international nuclear data community.

